
Database Update - Transaction Processing
Logical Transaction 
Record Hold Logic 
Backing Out a Transaction 
Restarting a Transaction 

Logical Transaction
Natural performs database updating operations based on transactions, which means that all database update requests
are processed in logical transaction units. A logical transaction is the smallest unit of work (as defined by you) which
must be performed in its entirety to ensure that the information contained in the database is logically consistent. 

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) involving one or
more database files. A logical transaction may also span multiple Natural programs. 

A logical transaction begins when a record is put on "hold"; Natural does this automatically when the record is read
for updating, for example, if a FIND loop contains an UPDATE or DELETE statement. 

The end of a logical transaction is determined by an END TRANSACTION statement in the program. This statement
ensures that all updates within the transaction have been successfully applied, and releases all records that were put
on "hold" during the transaction. 

Example: 

 DEFINE DATA LOCAL 
   1 MYVIEW VIEW OF EMPLOYEES 
     2 NAME 
   END-DEFINE 
   FIND MYVIEW WITH NAME = ’SMITH’ 
      DELETE 
      END TRANSACTION 
   END-FIND 
   END

Each record selected would be put on "hold", deleted, and then - when the END TRANSACTION statement is
executed - released from "hold". 

Note: 
The OPRB parameter, as set by the Natural administrator, determines whether or not Natural will generate an END
TRANSACTION statement at the end of each Natural program. Ask your Natural administrator for details.

Example of STORE Statement: 

See program STOREX01 in library SYSEXPG. 

1Copyright Software AG 2003

Database Update - Transaction ProcessingDatabase Update - Transaction Processing



Record Hold Logic 
If Natural is used with Adabas, any record which is to be updated will be placed in "hold" status until an END
TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time limit is exceeded. 

When a record is placed in "hold" status for one user, the record is not available for update by another user. Another
user who wishes to update the same record will be placed in "wait" status until the record is released from "hold"
when the first user ends or backs out his/her transaction. 

To prevent users from being placed in wait status, the session parameter WH (Wait Hold) can be used (see the 
Natural Parameter documentation). 

When you use update logic in a program, you should consider the following: 

The maximum time that a record can be in hold status is determined by the Adabas transaction time limit
(Adabas parameter TT). If this time limit is exceeded, you will receive an error message and all database
modifications done since the last END TRANSACTION will be made undone. 
The number of records on hold and the transaction time limit are affected by the size of a transaction, that is, by
the placement of the END TRANSACTION statement in the program. Restart facilities should be considered
when deciding where to issue an END TRANSACTION. For example, if a majority of records being processed
are not to be updated, the GET statement is an efficient way of controlling the "holding" of records. This avoids
issuing multiple END TRANSACTION statements and reduces the number of ISNs on hold. When you process
large files, you should bear in mind that the GET statement requires an additional Adabas call. An example of a
GET statement is shown below. 

Example of GET Statement: 

 DEFINE DATA LOCAL  
   1 EMPLOY-VIEW VIEW OF EMPLOYEES  
     2 NAME 
     2 SALARY (1) 
   END-DEFINE 
   RD. READ EMPLOY-VIEW BY NAME  
      IF SALARY (1) > 30000  
   GE.   GET EMPLOY-VIEW *ISN (RD.) 
         compute SALARY (1) = SALARY (1) * 1.15 
         UPDATE (GE.) 
         END TRANSACTION  
      END-IF  
   END-READ  
   END

On mainframe computers, the placing of records in "hold" status is also controlled by the profile parameter RI, as set
by the Natural administrator. 

Copyright Software AG 20032

Database Update - Transaction ProcessingRecord Hold Logic



Backing Out a Transaction 
During an active logical transaction, that is, before the END TRANSACTION statement is issued, you can cancel the
transaction by using a BACKOUT TRANSACTION statement. The execution of this statement removes all updates
that have been applied (including all records that have been added or deleted) and releases all records held by the
transaction. 

Restarting a Transaction 
With the END TRANSACTION statement, you can also store transaction-related information. If processing of the
transaction terminates abnormally, you can read this information with a GET TRANSACTION DATA statement to
ascertain where to resume processing when you restart the transaction. 

Example of Using Transaction Data to Restart a Transaction:

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the user is
informed of the last EMPLOYEES record successfully processed. The user can resume processing from that
EMPLOYEES record. It would also be possible to set up the restart transaction message to include the last
VEHICLES record successfully updated before the restart operation. 

 ** Example Program ’GETTRX01’ 
   DEFINE DATA LOCAL  
   01 PERSON VIEW OF EMPLOYEES 
      02 PERSONNEL-ID     (A8) 
      02 NAME             (A20) 
      02 FIRST-NAME       (A20) 
      02 MIDDLE-I         (A1)  
      02 CITY             (A20)
   01 AUTO VIEW OF VEHICLES 
      02 PERSONNEL-ID     (A8) 
      02 MAKE             (A20)  
      02 MODEL            (A20) 
   01 ET-DATA 
      02 #APPL-ID          (A8) INIT <’ ’>  
      02 #USER-ID          (A8) 
      02 #PROGRAM          (A8) 
      02 #DATE             (A10)  
      02 #TIME             (A8)
      02 #PERSONNEL-NUMBER (A8) 
   END-DEFINE
   * 
   GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM  
                        #DATE    #TIME    #PERSONNEL-NUMBER
   *  
   IF  #APPL-ID NOT = ’NORMAL’     /* IF LAST EXECUTION ENDED ABNORMALLY
       AND #APPL-ID NOT = ’ ’ 
     INPUT (AD=OIL)      
       // 20T ’*** LAST SUCCESSFUL TRANSACTION ***’ (I)
        / 20T ’***********************************’ 
      /// 25T      ’APPLICATION:’ #APPL-ID 
        / 32T             ’USER:’ #USER-ID  
        / 29T          ’PROGRAM:’ #PROGRAM  
        / 24T     ’COMPLETED ON:’ #DATE ’AT’ #TIME   
        / 20T ’PERSONNEL NUMBER:’ #PERSONNEL-NUMBER 
   END-IF 
   REPEAT
     INPUT (AD=MIL) // 20T ’ENTER PERSONNEL NUMBER:’ #PERSONNEL-NUMBER 
     IF #PERSONNEL-NUMBER = 99999999 
       ESCAPE bottom

3Copyright Software AG 2003

Backing Out a TransactionDatabase Update - Transaction Processing



     END-IF
     FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER  
      IF NO RECORDS FOUND 
        REINPUT ’SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.’
      END-NOREC 
      FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
        IF NO RECORDS FOUND 
          WRITE ’PERSON DOES NOT OWN ANY CARS’ 
        END-NOREC 
        IF *COUNTER (FIND1.) = 1  /* FIRST PASS THROUGH THE LOOP
          INPUT (AD=M) 
            / 20T ’EMPLOYEES/AUTOMOBILE DETAILS’ (I) 
            / 20T ’----------------------------’ 
          /// 20T ’NUMBER:’ PERSONNEL-ID (AD=O)
            / 22T   ’NAME:’ NAME ’ ’ FIRST-NAME ’ ’ MIDDLE-I 
            / 22T   ’CITY:’ CITY 
            / 22T   ’MAKE:’ MAKE 
            / 21T  ’MODEL:’ MODEL 
          UPDATE (FIND1.)       /* UPDATE THE EMPLOYEES FILE
        ELSE                    /* SUBSEQUENT PASSES THROUGH THE LOOP 
           INPUT NO ERASE (AD=M) //////// 20T MAKE / 20T MODEL 
         END-IF    
         UPDATE (FIND2.)         /* UPDATE THE VEHICLES FILE 
         MOVE *APPLIC-ID TO #APPL-ID 
         MOVE *INIT-USER TO #USER-ID 
         MOVE *PROGRAM   TO #PROGRAM 
         MOVE *DAT4E     TO #DATE 
         MOVE *TIME      TO #TIME 
         END TRANSACTION #APPL-ID #USER-ID #PROGRAM 
                         #DATE    #TIME    #PERSONNEL-NUMBER 
       END-FIND                  /* FOR VEHICLES  (FIND2.) 
     END-FIND                    /* FOR EMPLOYEES (FIND1.) 
   END-REPEAT                    /* FOR REPEAT 
   STOP  /* Simulate abnormal transaction end
   END TRANSACTION ’NORMAL  ’ 
   END

Copyright Software AG 20034

Database Update - Transaction ProcessingRestarting a Transaction


	Database Update - Transaction Processing
	Logical Transaction
	Record Hold Logic
	Backing Out a Transaction
	Restarting a Transaction


